Therefore, if the amount of glucose supplied by the blood falls, the brain is one of the first organs affected. In most people, subtle reduction of mental efficiency can be observed when the glucose falls below 65 mg/dl (3.6 mM). Impairment of action and judgment usually becomes obvious below 40 mg/dl (2.2 mM). Seizures may occur as the glucose falls further. As blood glucose levels fall below 10 mg/dl (0.55 mM), most neurons become electrically silent and nonfunctional, resulting in coma. These brain effects are collectively referred to as neuroglycopenia.
The importance of an adequate supply of glucose to the brain is apparent from the number of nervous, hormonal and metabolic responses to a falling glucose level. Most of these are defensive or adaptive, tending to raise the blood sugar via glycogenolysis and gluconeogenesis or provide alternative fuels. If the blood sugar level falls too low the liver converts a storage of glycogen into glucose and releases it into the bloodstream, to prevent the person going into a diabetic coma, for a short period of time.
Brief or mild hypoglycemia produces no lasting effects on the brain, though it can temporarily alter brain responses to additional hypoglycemia. Prolonged, severe hypoglycemia can produce lasting damage of a wide range. This can include impairment of cognitive function, motor control, or even consciousness. The likelihood of permanent brain damage from any given instance of severe hypoglycemia is difficult to estimate, and depends on a multitude of factors such as age, recent blood and brain glucose experience, concurrent problems such as hypoxia, and availability of alternative fuels. The vast majority of symptomatic hypoglycemic episodes result in no detectable permanent harm.